519 research outputs found

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    Gerrymandering and Compactness: Implementation Flexibility and Abuse

    Full text link
    The shape of an electoral district may suggest whether it was drawn with political motivations, or gerrymandered. For this reason, quantifying the shape of districts, in particular their compactness, is a key task in politics and civil rights. A growing body of literature suggests and analyzes compactness measures mathematically, but little consideration has been given to how these scores should be calculated in practice. Here, we consider the effects of a number of decisions that must be made in interpreting and implementing a set of popular compactness scores. We show that the choices made in quantifying compactness may themselves become political tools, with seemingly innocuous decisions leading to disparate scores. We show that when the full range of implementation flexibility is used, it can be abused to make clearly gerrymandered districts appear quantitatively reasonable. This complicates using compactness as a legislative or judicial standard to counteract unfair redistricting practices. This paper accompanies the release of packages in C++, Python, and R which correctly, efficiently, and reproducibly calculate a variety of compactness scores.Comment: 10 pages, 17 figures, 1 tabl

    Computational Optimal Transport

    Get PDF
    Optimal transport is the mathematical discipline of matching supply to demand while minimizing shipping costs. This matching problem becomes extremely challenging as the quantity of supply and demand points increases; modern applications must cope with thousands or millions of these at a time. Here, we introduce the computational optimal transport problem and summarize recent ideas for achieving new heights in efficiency and scalability

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows
    corecore